The Synthesis and Characterization of Substituted Phosphates and Layered Manganese Oxides

M. Stanley Whittingham State University of New York at Binghamton May 10th, 2011

Project ID # ES050

Overview

Timeline

- Project start date: 06-01-2008
- Project end date: 12-31-2011
- Percent complete: 90%

Budget

- Total project funding
 - DOE share: 100% \$
 - Contractor share: Personnel
- Funding received
 - FY10: 294k\$
 - FT11: 340k\$

Barriers

- Barriers addressed
 - Lower-cost,
 - Higher power,
 - Higher capacity and
 - Abuse-tolerant safer cathodes

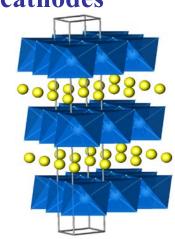
Partners

- MIT, SUNY Stony Brook, LBNL, BNL, NREL, ORNL, PNNL, Georgia Tech.
- Primet, and other companies

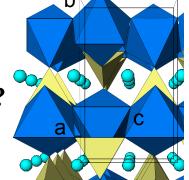
Objectives and Relevance of Work

- The primary objectives of our work are to find:
 - Lower-cost and higher capacity cathodes,
 exceeding 200 Ah/kg (700-800 Wh/kg lab theoretical).
 - Moderate rate PHEV compatible cathodes
 - Both of the above are to be based on environmentally benign materials

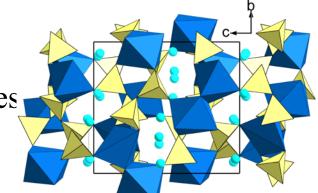
Relevance: Milestones


- a) Determine the optimum composition of LiNi_yMn_yCo_{1-2y}O₂ for PHEV applications (Sept. 10)
 - LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ is optimum of stoichiometric LiMO₂.
- b) Identify LiNi_yMn_yCo_{1-2y}O₂ systems that can achieve 200 Ah/kg for PHEV applications (Mar. 11)
 - 200 Ah/kg will be hard to attain without new electrolytes, without going lithium-rich, and then the desired rate may not be attained.
- c) Identify and evaluate phosphate structures, containing Fe and/or Mn, that have the potential of achieving an energy density exceeding 700 Wh/kg. (Sep. 11)
 - Ongoing, with some promising leads
- d) Identify other materials, including those containing vanadium, that can undergo more than one electron transfer per redox center (Sep. 11)
 - Identified several transition metal elements that can undergo more than one electron transfer

Approach and Strategy: Improved Cathodes

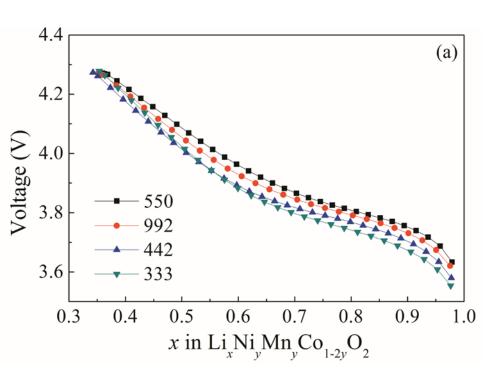

- Place emphasis on low cost materials,
 - Synthesize by practical approaches
 - Structurally characterize, including defects and morphology
 - Electrochemically evaluate in a range of cell configurations
 - Transition metal layered dioxides
 - Minimize expensive components, such as cobalt.
 - Determine inherent rate capability.
 - Determine maximum lithium capacity, and relate to charging voltage.
 - Answer the question: Can 200 Ah/kg be obtained for LiMO₂ at \geq 1C rate?
 - Unlikely that this milestone can be accomplished with today's electrolytes
 - High capacity transition metal phosphates
 - Systematic doping of olivine understand role of V in LiFePO₄.
 - V substitutes for iron and enhances rate (Milestone complete)
 - Explore non-olivine phosphates and related materials.
 - Iron pyrophosphates cycle better electrolyte needed (Milestone)

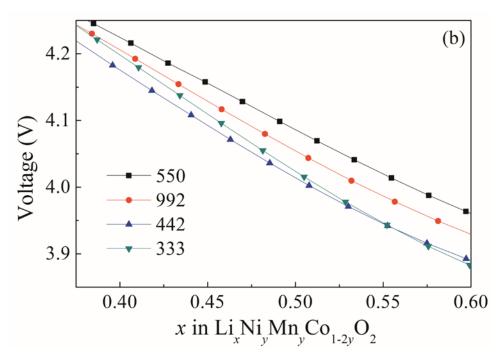
Lower-cost, higher power, higher-capacity and abuse-tolerant safer cathodes


- Ultimate capability of the MnO₂ and NiO₂ lattice
 - Can capacity be increased to 200 Ah/kg at C rate is?
 - Must cell voltage be reduced to increase capacity?
 - Why is the rate capability lower than that of olivine?

- Olivines
 - What is role of substitutes in lattice
 - Can vanadium be placed in the lattice?

- Beyond Olivines
 - − > 200 Ah/kg from phosphate-type structures
 - Must vanadium be involved?
 - The stability of high voltage cathodes electrolytes

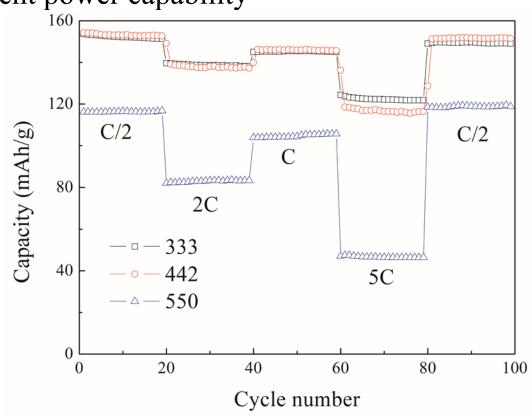



Status of LiMO₂ in 2010

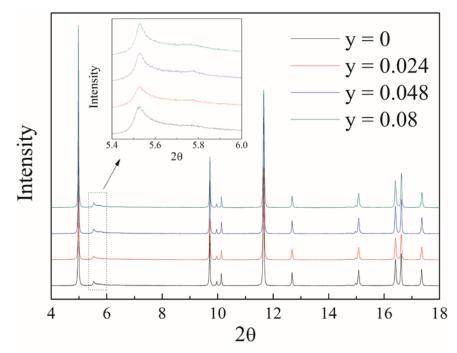
- What is maximum Mn in Li(Ni_yMn_zCo_{1-y-z})O₂?
 - Maximum Mn is 0.5 in lithium stoichiometric material
 - Electrochemistry is good, but lower rate than LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂
 - Rate suffers for Mn > 0.5 in lithium-rich materials
- What is actual capacity for LiNi_yMn_yCo_{1-2y}O₂?
 - 180 Ah/kg for a 4.3 volt cut-off on charging
 - 200 Ah/kg for a 4.4 volt cut-off on charging
 - But, all cells show a 1st cycle loss of 10-15 Ah/kg
 - Thus, theoretical capacity of over 220 Ah/kg needed for 200 Ah/kg practical
 - Can 200 Ah/kg be achieved with present electrolytes?
 - In last 12 months addressed the following questions
 - What is limiting capacity?
 - What is limiting power capability?
 - Work with high-voltage cathode team to use and high voltage electrolytes
 - Do we have to go to lithium-rich and find a way for improving rate?

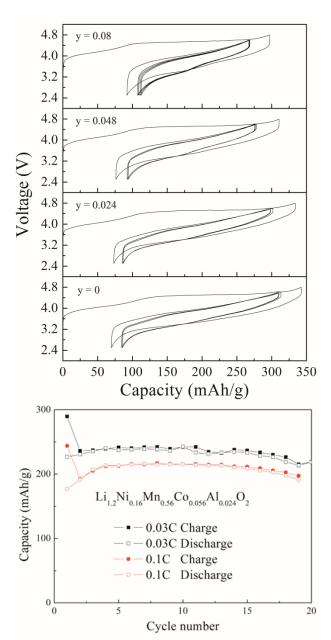
Co impacts Theoretical Capacity of $LiNi_yMn_yCo_{1-2y}O_2$

- Cross-over effect of Cobalt:
 - Cobalt causes a more rapid increase of open circuit voltage on charging
 - Voltage increases above that of Li_x442 at x = 0.55
 - Voltage increases above that of $Li_x 992$ at x = 0.38
 - Increase of cobalt content reduces capacity to a given cut-off voltage

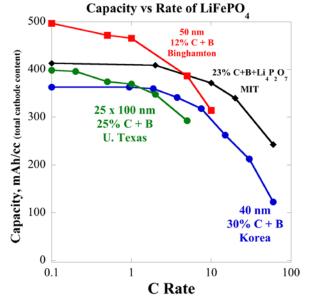


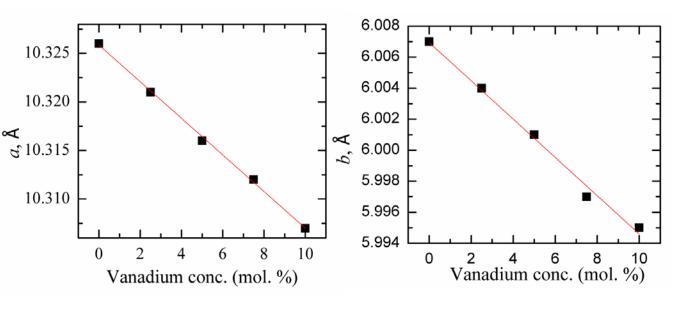
LiNi_yMn_yCo_{1-2y}O₂ has High Power Capability

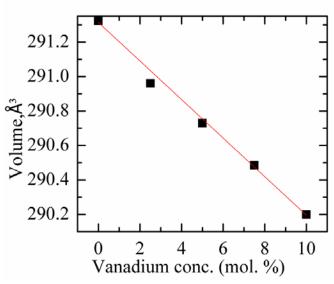

- Binder-free test of LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂
 - Shows high rate capability, comparable to that of 333 composition
 - Much superior to cobalt free 550 composition
- Thus, material has inherent power capability


Binghamton Material

Tested at NREL by C. Ban and A. Dillon

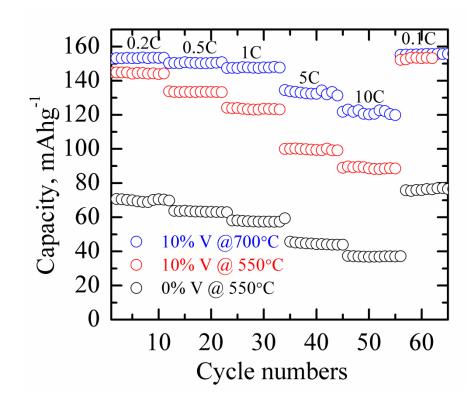

- Al substituted Lithium-rich materials increase the capacity and lower the cost
 - Solid solution Li_{1.2}Ni_{0.16}Mn_{0.56}Co_{0.08-y}Al_yO₂
 (high resolution XRD) have more than 200
 Ah/kg capacity (2.5V-4.8V)
 - Li_{1.2}Ni_{0.16}Mn_{0.56}Co_{0.056}Al_{0.024}O₂ deliver around
 200 Ah/kg capacity at 0.1C at room temperature
- Can Al substitution increase thermal stability?
 - preliminary data says yes
- Can power capability be improved? Maybe

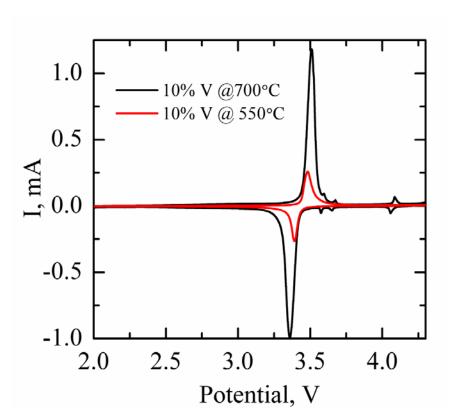




Last year we showed that LiFePO₄ gives nanostructure with V

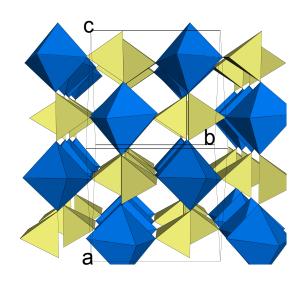
- Gives highest volumetric capacity
- Last year's future work: does V go into lattice?
 - Vanadium goes on Fe site at 550°C
 - X-ray proves it up to 10% V
 - Vegard's solid solution law obeyed

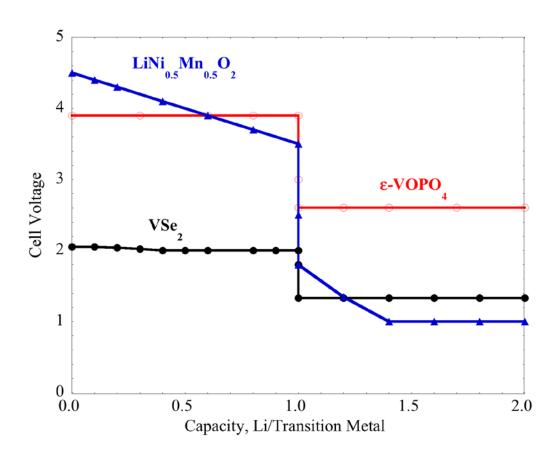




Vanadium addition to LiFePO₄ gives higher capacity and rate

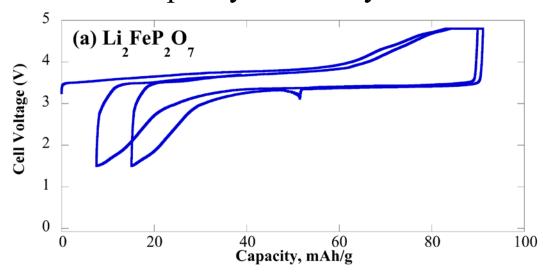
- BATT Project is now complete
 - Vanadium goes on Fe site at 550°C
 - X-ray proves it for at least 10% V
 - At 700°C some V rejected
 - $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ formed
 - Shows best electrochemistry

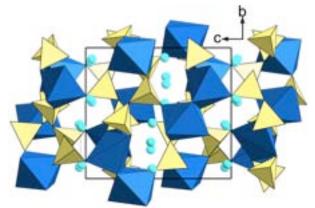


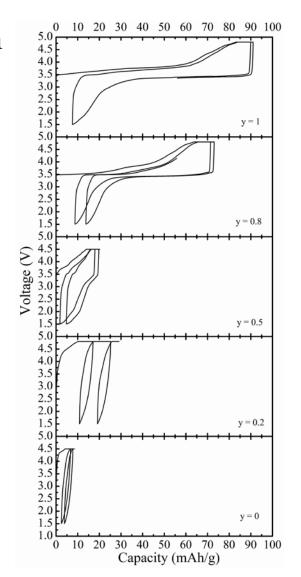


200 Ah/kg or 700+ Wh/kg Cathodes

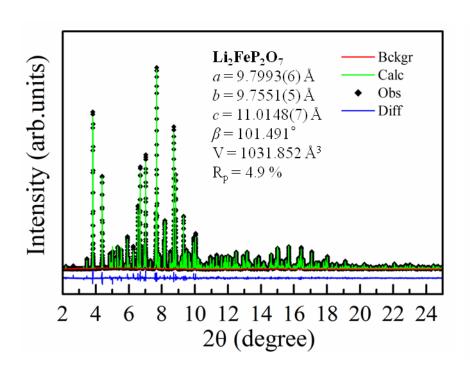
Options

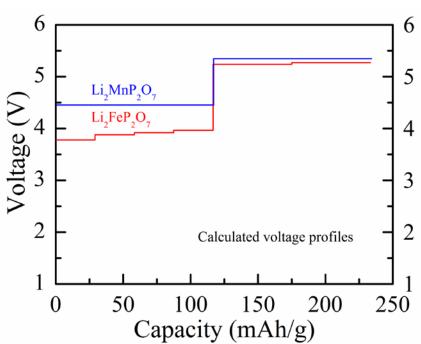

- Several materials known to react with more than 1 lithium
 - Dc to dc converters can handle voltage differences
- Higher voltage cathodes
 - Spinel, Li"Co"PO₄ (not cobalt)
- Combination of above two
- Search for new structures



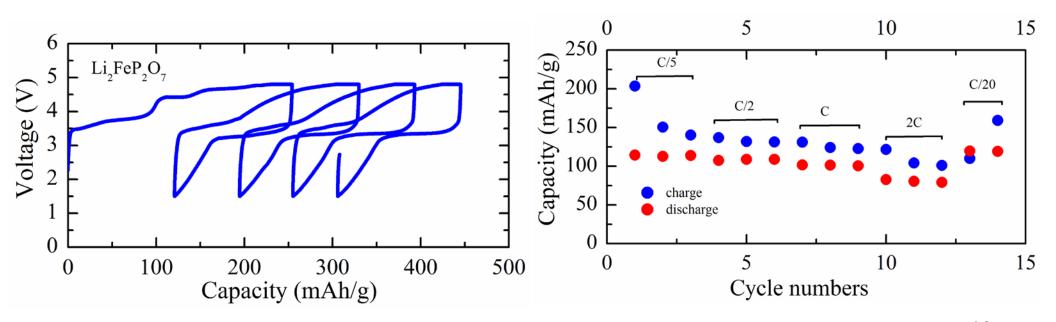

Higher Capacity Cathodes: >1 Li/M

- Mn and Fe pyrophosphates
 - Status 2010
 - Li₂(FeMn)P₂O₇ formed for range of Fe and Mn
 - Capacity is directly related to Fe content


Structure now determined



Higher Capacity Cathodes: >1 Li/M


- Mn and Fe pyrophosphates
 - Li₂(FeMn)P₂O₇ formed for complete range of Fe and Mn
 - Structure determined using data from APS-ANL
 - Is it possible to remove 2nd lithium at higher voltage?
 - Ceder at MIT calculated redox potentials (BATT program)

Higher Capacity Cathodes: >1 Li/M

- Significant improvement on the performance after nanoscissoring (Primet collaboration)
 - Particle size reduced from microns to less than 100 nm
 - More than one lithium can be cycled
 - Maybe both lithium can be extracted with appropriate electrolyte
 - Good structural reversibility during the cycling

Collaboration and Coordination with other Institutions

APS at ANL

High resolution x-ray diffraction data for olivines, pyrophosphates and spinels.

• G. Ceder at MIT (BATT-VT funding)

- Determination of redox potentials of Fe-Mn pyrophosphates, and other materials
 - Redox for 2nd Li at limit of electrolyte stability; published

Primet (Ithaca Co)

- Collaboration underway on nanosizing materials (Nano-scissoringTM)
 - Pyrophosphates, olivines, high voltage spinels (ARL-CERDEC)
- Determination of redox potentials of Fe-Mn Pyrophosphates, and other materials

C. Ban and A. Dillon (NREL)

- High rate evaluation of LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂
 - 1st phase of collaboration showing high rate complete and published

• F. Alamgir (Georgia Tech.)

- In-situ XAS measurements of LixMO2 at Brookhaven
 - Work complete showing role of cobalt in controlling voltage; in press

• J. Cabana (LBNL-BATT), J. Xiao (PNNL), Primet

Initial collaborations underway on high voltage spinels,

Future Work

• $LiMO_2$

- Complete work on layered oxides, LiMO₂ 2Q 2011
 - Work with A. Dillon and C. Ban of NREL
- High Capacity Phosphates and Related Structures (2 electron)
 - Identify and evaluate phosphate structures, containing Fe and/or Mn, that have the potential of achieving an energy density exceeding 700 Wh/kg.
 - Complete studies on pyrophosphate
 - Explore structure retention of VOPO₄ lattice on cycling
- Identify other materials, including those containing vanadium, that can undergo more than electron transfer per redox center
- High Voltage Cathodes
 - Work with J. Cabana (LBNL), J. Xie (PNNL) and Primet on spinel
 - Collaborate with high voltage electrolyte group (also applicable to 2e phosphate

- LiMO₂ LiNi_{0.40}Mn_{0.40}Co_{0.20}O₂ is optimum composition for Li/M = 1
 - Same rate capability as LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂
 - 200 Ah/kg will not be attained with present electrolytes
 - NOGO for 200 Ah/kg
 - GO for replacement of 333 NMC
 - Built collaboration with NREL will use on other systems
- Olivine LiFePO₄
 - Partial substitution of Fe is possible
 - Improves capacity and rate capability (GO)
- Multiple electron materials
 - Iron pyrophosphate characterized and lithium can be cycled
 - Challenge is getting 2nd lithium out
 - Working with G. Ceder at MIT on determining potentials
 - Working with Primet on nano-sizing the material
 - Working with high voltage electrolyte team/experts
- Technology transfer underway
 - Students in battery companies and at BNL, NREL and PNNL
 - Publications and presentations to transfer knowledge
 - NYBEST consortium